I. Preliminaries

Loading libraries

library("tidyverse")
library("tibble")
library("msigdbr")
library("ggplot2")
library("TCGAbiolinks")
library("RNAseqQC")
library("DESeq2")
library("ensembldb")
library("purrr")
library("magrittr")
library("vsn")
library("matrixStats")
library("dplyr")
library("grex")
library("survminer")
library("survival")

II. Downloading the TCGA gene expression data

Create a function for downloading TCGA gene expression data.

For more detailed documentation, refer to 2. Differential Gene Expression Analysis - TCGA.Rmd.

GDC_DIR = "../data/public/GDCdata"

query_and_filter_samples <- function(project) {
  query_tumor <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = "Primary Tumor"
  )
  tumor <- getResults(query_tumor)

  query_normal <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = "Solid Tissue Normal"
  )
  normal <- getResults(query_normal)

  submitter_ids <- inner_join(tumor, normal, by = "cases.submitter_id") %>%
    dplyr::select(cases.submitter_id)
  tumor <- tumor %>%
    dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)
  normal <- normal %>%
    dplyr::filter(cases.submitter_id %in% submitter_ids$cases.submitter_id)

  samples <- rbind(tumor, normal)
  unique(samples$sample_type)

  query_project <- GDCquery(
    project = project,
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    experimental.strategy = "RNA-Seq",
    workflow.type = "STAR - Counts",
    access = "open",
    sample.type = c("Solid Tissue Normal", "Primary Tumor"),
    barcode = as.list(samples$sample.submitter_id)
  )

  # If this is your first time running this notebook (i.e., you have not yet downloaded the results of the query in the previous block),
  # uncomment the code block below

  # GDCdownload(
  #   query_coad,
  #   directory = GDC_DIR
  # )

  return(list(samples = samples, query_project = query_project))
}

Download the TCGA gene expression data for colorectal cancer (TCGA-COAD).

projects <- c("TCGA-COAD")

with_results_projects <- c()

samples <- list()
project_data <- list()

for (project in projects) {
  result <- tryCatch(
    {
      result <- query_and_filter_samples(project)
      samples[[project]] <- result$samples
      project_data[[project]] <- result$query_project

      with_results_projects <- c(with_results_projects, project)
    },
    error = function(e) {

    }
  )
}

Running the code block above should generate and populate a directory named GDCdata.

III. Data preprocessing

Construct the RNA-seq count matrix for each cancer type.

tcga_data <- list()
tcga_matrix <- list()

projects <- with_results_projects
for (project in projects) {
  tcga_data[[project]] <- GDCprepare(
    project_data[[project]], 
    directory = GDC_DIR,
    summarizedExperiment = TRUE
  )
}
for (project in projects) {
  count_matrix <- assay(tcga_data[[project]], "unstranded")

  # Remove duplicate entries
  count_matrix_df <- data.frame(count_matrix)
  count_matrix_df <- count_matrix_df[!duplicated(count_matrix_df), ]
  count_matrix <- data.matrix(count_matrix_df)
  rownames(count_matrix) <- cleanid(rownames(count_matrix))
  count_matrix <- count_matrix[!(duplicated(rownames(count_matrix)) | duplicated(rownames(count_matrix), fromLast = TRUE)), ]

  tcga_matrix[[project]] <- count_matrix
}

Format the samples table so that it can be fed as input to DESeq2.

for (project in projects) {
  rownames(samples[[project]]) <- samples[[project]]$cases
  samples[[project]] <- samples[[project]] %>%
    dplyr::select(case = "cases.submitter_id", type = "sample_type")
  samples[[project]]$type <- str_replace(samples[[project]]$type, "Solid Tissue Normal", "normal")
  samples[[project]]$type <- str_replace(samples[[project]]$type, "Primary Tumor", "tumor")
}

DESeq2 requires the row names of samples should be identical to the column names of count_matrix.

for (project in projects) {
  colnames(tcga_matrix[[project]]) <- gsub(x = colnames(tcga_matrix[[project]]), pattern = "\\.", replacement = "-")
  tcga_matrix[[project]] <- tcga_matrix[[project]][, rownames(samples[[project]])]

  # Sanity check
  print(all(colnames(tcga_matrix[[project]]) == rownames(samples[[project]])))
}

IV. Differential gene expression analysis

For more detailed documentation on obtaining the gene set, refer to 7. Differential Gene Expression Analysis - TCGA - Pan-cancer - Unique Genes.Rmd.

RCDdb <- "../data/public/rcd-gene-list/unique-genes/necroptosis-ferroptosis-pyroptosis/"

Write utility functions for filtering the gene sets, performing differential gene expression analysis, plotting the results, and performing variance-stabilizing transformation.

filter_gene_set_and_perform_dgea <- function(genes) {
  tcga_rcd <- list()

  for (project in projects) {
    rownames(genes) <- genes$gene_id
    tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
    tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
  }

  dds_rcd <- list()
  res_rcd <- list()

  for (project in projects) {
    print(project)
    print("=============")
    dds <- DESeqDataSetFromMatrix(
      countData = tcga_rcd[[project]],
      colData = samples[[project]],
      design = ~type
    )
    dds <- filter_genes(dds, min_count = 10)
    dds$type <- relevel(dds$type, ref = "normal")
    dds_rcd[[project]] <- DESeq(dds)
    res_rcd[[project]] <- results(dds_rcd[[project]])
  }

  deseq.bbl.data <- list()

  for (project in projects) {
    deseq.results <- res_rcd[[project]]
    deseq.bbl.data[[project]] <- data.frame(
      row.names = rownames(deseq.results),
      baseMean = deseq.results$baseMean,
      log2FoldChange = deseq.results$log2FoldChange,
      lfcSE = deseq.results$lfcSE,
      stat = deseq.results$stat,
      pvalue = deseq.results$pvalue,
      padj = deseq.results$padj,
      cancer_type = project,
      gene_symbol = genes[rownames(deseq.results), "gene"]
    )
  }

  deseq.bbl.data.combined <- bind_rows(deseq.bbl.data)
  deseq.bbl.data.combined <- dplyr::filter(deseq.bbl.data.combined, abs(log2FoldChange) >= 1.5 & padj < 0.05)

  return(deseq.bbl.data.combined)
}
plot_dgea <- function(deseq.bbl.data.combined) {
  sizes <- c("<10^-15" = 4, "10^-10" = 3, "10^-5" = 2, "0.05" = 1)

  deseq.bbl.data.combined <- deseq.bbl.data.combined %>%
    mutate(fdr_category = cut(padj,
      breaks = c(-Inf, 1e-15, 1e-10, 1e-5, 0.05),
      labels = c("<10^-15", "10^-10", "10^-5", "0.05"),
      right = FALSE
    ))

  top_genes <- deseq.bbl.data.combined %>%
    group_by(cancer_type) %>%
    mutate(rank = rank(-abs(log2FoldChange))) %>%
    dplyr::filter(rank <= 10) %>%
    ungroup()

  ggplot(top_genes, aes(y = cancer_type, x = gene_symbol, size = fdr_category, fill = log2FoldChange)) +
    geom_point(alpha = 0.5, shape = 21, color = "black") +
    scale_size_manual(values = sizes) +
    scale_fill_gradient2(low = "blue", mid = "white", high = "red", limits = c(min(deseq.bbl.data.combined$log2FoldChange), max(deseq.bbl.data.combined$log2FoldChange))) +
    theme_minimal() +
    theme(
      axis.text.x = element_text(size = 9, angle = 90, hjust = 1)
    ) +
    theme(legend.position = "bottom") +
    theme(legend.position = "bottom") +
    labs(size = "Adjusted p-value", fill = "log2 FC", y = "Cancer type", x = "Gene")
}
perform_vsd <- function(genes) {
  tcga_rcd <- list()

  for (project in projects) {
    rownames(genes) <- genes$gene_id
    tcga_rcd[[project]] <- tcga_matrix[[project]][rownames(tcga_matrix[[project]]) %in% genes$gene_id, ]
    tcga_rcd[[project]] <- tcga_rcd[[project]][, rownames(samples[[project]])]
  }

  vsd_rcd <- list()

  for (project in projects) {
    print(project)
    print("=============")
    dds <- DESeqDataSetFromMatrix(
      countData = tcga_rcd[[project]],
      colData = samples[[project]],
      design = ~type
    )
    dds <- filter_genes(dds, min_count = 10)

    # Perform variance stabilization
    dds <- estimateSizeFactors(dds)
    nsub <- sum(rowMeans(counts(dds, normalized = TRUE)) > 10)
    vsd <- vst(dds, nsub = nsub)
    vsd_rcd[[project]] <- assay(vsd)
  }

  return(vsd_rcd)
}

Pyroptosis

Fetch the gene set of interest.

genes <- read.csv(paste0(RCDdb, "Pyroptosis.csv"))
print(genes)
genes$gene_id <- cleanid(genes$gene_id)
genes <- distinct(genes, gene_id, .keep_all = TRUE)
genes <- subset(genes, gene_id != "")
genes

Filter the genes to include only those in the gene set of interest, and then perform differential gene expression analysis.

deseq.bbl.data.combined <- filter_gene_set_and_perform_dgea(genes)
[1] "TCGA-COAD"
[1] "============="
Warning: some variables in design formula are characters, converting to factorsestimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing
-- replacing outliers and refitting for 3 genes
-- DESeq argument 'minReplicatesForReplace' = 7 
-- original counts are preserved in counts(dds)
estimating dispersions
fitting model and testing
deseq.bbl.data.combined

Plot the results.

plot_dgea(deseq.bbl.data.combined)

Perform variance-stabilizing transformation for further downstream analysis (i.e., for survival analysis).

vsd <- perform_vsd(genes)
[1] "TCGA-COAD"
[1] "============="

V. Downloading the clinical data

Download clinical data from TCGA, and perform some preprocessing: - The deceased column should be FALSE if the patient is alive and TRUE otherwise - The overall_survival column should reflect the follow-up time if the patient is alive and the days to death otherwise

download_clinical_data <- function(project) {
  clinical_data <- GDCquery_clinic(project)
  clinical_data$deceased <- ifelse(clinical_data$vital_status == "Alive", FALSE, TRUE)
  clinical_data$overall_survival <- ifelse(clinical_data$vital_status == "Alive",
    clinical_data$days_to_last_follow_up,
    clinical_data$days_to_death
  )

  return(clinical_data)
}
tcga_clinical <- list()
for (project in projects) {
  tcga_clinical[[project]] <- download_clinical_data(project)
}

VI. Performing survival analysis

Write utility functions for performing survival analysis.

construct_gene_df <- function(gene_of_interest, project) {
  gene_df <- vsd[[project]] %>%
    as.data.frame() %>%
    rownames_to_column(var = "gene_id") %>%
    gather(key = "case_id", value = "counts", -gene_id) %>%
    left_join(., genes, by = "gene_id") %>%
    dplyr::filter(gene == gene_of_interest) %>%
    dplyr::filter(case_id %in% rownames(samples[[project]] %>% dplyr::filter(type == "normal")))

  q1 <- quantile(gene_df$counts, probs = 0.25)
  q3 <- quantile(gene_df$counts, probs = 0.75)
  gene_df$strata <- ifelse(gene_df$counts >= q3, "HIGH", ifelse(gene_df$counts <= q1, "LOW", "MIDDLE"))
  gene_df <- gene_df %>% dplyr::filter(strata %in% c("LOW", "HIGH"))
  gene_df$case_id <- paste0(sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 1), '-',
                          sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 2), '-', 
                          sapply(strsplit(as.character(gene_df$case_id), "-"), `[`, 3))
  gene_df <- merge(gene_df, tcga_clinical[[project]], by.x = "case_id", by.y = "submitter_id")
  
  return(gene_df)
}
compute_surival_fit <- function(gene_df) {
  return (survfit(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}
compute_cox <- function(gene_df) {
  return (coxph(Surv(overall_survival, deceased) ~ strata, data=gene_df))
}
plot_survival <- function(fit) {
  return(ggsurvplot(fit,
    data = gene_df,
    pval = T,
    risk.table = T,
    risk.table.height = 0.3
  ))
}
compute_survival_diff <- function(gene_df) {
  return(survdiff(Surv(overall_survival, deceased) ~ strata, data = gene_df))
}

Perform survival analysis by testing for the difference in the Kaplan-Meier curves using the G-rho family of Harrington and Fleming tests: https://rdrr.io/cran/survival/man/survdiff.html

Our genes of interest are GSDMD (the primary executor of pyroptosis) and the differentially expressed genes.

significant_projects <- c()
significant_genes <- c()

ctr <- 1
for (project in projects) {
  for (gene in c("GSDMD", genes$gene)) {
    cat(project, gene, "\n\n")
    error <- tryCatch (
      {
        gene_df <- construct_gene_df(gene, project)
      },
      error = function(e) {
        cat("\n\n============================\n\n")
        e
      }
    )
    
    if(inherits(error, "error")) next

    if (nrow(gene_df) > 0) {
      fit <- compute_surival_fit(gene_df)
      tryCatch (
        {
          survival <- compute_survival_diff(gene_df)
          cox <- compute_cox(gene_df)
          print(ctr)
          ctr <- ctr + 1
          print(survival)
          cat("\n")
          print(cox)
          print(plot_survival(fit))
          if (pchisq(survival$chisq, length(survival$n)-1, lower.tail = FALSE) < 0.05) {
            significant_projects <- c(significant_projects, project)
            significant_genes <- c(significant_genes, gene)
          }
        },
        error = function(e) {
        }
      )
      
    }
    
    cat("\n\n============================\n\n")
  }
}
TCGA-COAD GSDMD 

[1] 1
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.93     0.589      1.18
strata=LOW  2        2     3.07     0.371      1.18

 Chisq= 1.2  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW -1.2084    0.2987   1.1730 -1.03 0.303

Likelihood ratio test=1.23  on 1 df, p=0.2675
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================

TCGA-COAD CHMP7 

[1] 2
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 20 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4     4.59    0.0754     0.248
strata=LOW  3        3     2.41    0.1434     0.248

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.4115    1.5090   0.8315 0.495 0.621

Likelihood ratio test=0.24  on 1 df, p=0.6217
n= 7, number of events= 7 
   (20 observations deleted due to missingness)


============================

TCGA-COAD GSDMC 

[1] 3
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4     4.88     0.160     0.985
strata=LOW  2        2     1.12     0.699     0.985

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.9671    2.6303   1.0107 0.957 0.339

Likelihood ratio test=0.88  on 1 df, p=0.3471
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD ELANE 

[1] 4
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 5        5     3.76     0.407     0.904
strata=LOW  3        3     4.24     0.361     0.904

 Chisq= 0.9  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.7860    0.4557   0.8464 -0.929 0.353

Likelihood ratio test=0.94  on 1 df, p=0.3319
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD IRF1 

[1] 5
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     4.35     0.419      4.26
strata=LOW  2        2     0.65     2.804      4.26

 Chisq= 4.3  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

               coef exp(coef)  se(coef)     z     p
strataLOW 2.232e+01 4.923e+09 3.308e+04 0.001 0.999

Likelihood ratio test=4.61  on 1 df, p=0.03188
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================

TCGA-COAD CYCS 

[1] 6
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 1        1     1.45    0.1397     0.211
strata=LOW  5        5     4.55    0.0445     0.211

 Chisq= 0.2  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.5241    1.6889   1.1513 0.455 0.649

Likelihood ratio test=0.23  on 1 df, p=0.6342
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD GSDMA 

[1] 7
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     2.54    0.0845     0.149
strata=LOW  5        5     5.46    0.0393     0.149

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3162    0.7289   0.8231 -0.384 0.701

Likelihood ratio test=0.15  on 1 df, p=0.7014
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD CASP4 

[1] 8
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2    0.902     1.335      1.74
strata=LOW  5        5    6.098     0.198      1.74

 Chisq= 1.7  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.2525    0.2858   1.0088 -1.242 0.214

Likelihood ratio test=1.45  on 1 df, p=0.2278
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD BAK1 

[1] 9
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2      2.1   0.00499    0.0079
strata=LOW  5        5      4.9   0.00214    0.0079

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.0781    1.0812   0.8787 0.089 0.929

Likelihood ratio test=0.01  on 1 df, p=0.9289
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD NOD1 

[1] 10
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4      3.6    0.0444     0.135
strata=LOW  2        2      2.4    0.0667     0.135

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3429    0.7097   0.9368 -0.366 0.714

Likelihood ratio test=0.14  on 1 df, p=0.712
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD NLRP7 

[1] 11
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2    0.983     1.051      1.59
strata=LOW  4        4    5.017     0.206      1.59

 Chisq= 1.6  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.4388    0.2372   1.2359 -1.164 0.244

Likelihood ratio test=1.46  on 1 df, p=0.2262
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD CASP3 

[1] 12
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2      1.6    0.0987     0.147
strata=LOW  5        5      5.4    0.0293     0.147

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3505    0.7044   0.9188 -0.381 0.703

Likelihood ratio test=0.14  on 1 df, p=0.7067
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD GSDMB 

[1] 13
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=3, 19 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2    2.667     0.167         2
strata=LOW  1        1    0.333     1.333         2

 Chisq= 2  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

               coef exp(coef)  se(coef) z p
strataLOW 2.215e+01 4.171e+09 4.566e+04 0 1

Likelihood ratio test=2.2  on 1 df, p=0.1383
n= 3, number of events= 3 
   (19 observations deleted due to missingness)


============================

TCGA-COAD GZMB 

[1] 14
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.91     0.619      1.03
strata=LOW  4        4     5.09     0.233      1.03

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.9149    0.4005   0.9283 -0.986 0.324

Likelihood ratio test=1  on 1 df, p=0.3178
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD GSDME 

[1] 15
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4    5.017     0.206      1.59
strata=LOW  2        2    0.983     1.051      1.59

 Chisq= 1.6  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.439     4.215    1.236 1.164 0.244

Likelihood ratio test=1.46  on 1 df, p=0.2262
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD CHMP3 

[1] 16
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     2.25     0.254     0.417
strata=LOW  4        4     4.75     0.120     0.417

 Chisq= 0.4  on 1 degrees of freedom, p= 0.5 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.5293    0.5890   0.8287 -0.639 0.523

Likelihood ratio test=0.4  on 1 df, p=0.5252
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD DPP9 

[1] 17
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 6        6     6.35    0.0190     0.102
strata=LOW  2        2     1.65    0.0731     0.102

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z    p
strataLOW 0.2777    1.3200   0.8717 0.319 0.75

Likelihood ratio test=0.1  on 1 df, p=0.754
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD NOD2 

[1] 18
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.73     0.926      1.67
strata=LOW  3        3     4.27     0.376      1.67

 Chisq= 1.7  on 1 degrees of freedom, p= 0.2 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)      z     p
strataLOW -1.395     0.248    1.164 -1.198 0.231

Likelihood ratio test=1.69  on 1 df, p=0.1937
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD NLRC4 

[1] 19
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.41     1.786      2.82
strata=LOW  4        4     5.59     0.451      2.82

 Chisq= 2.8  on 1 degrees of freedom, p= 0.09 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.7438    0.1748   1.1660 -1.496 0.135

Likelihood ratio test=2.68  on 1 df, p=0.1015
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD GSDMD 

[1] 20
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.93     0.589      1.18
strata=LOW  2        2     3.07     0.371      1.18

 Chisq= 1.2  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z     p
strataLOW -1.2084    0.2987   1.1730 -1.03 0.303

Likelihood ratio test=1.23  on 1 df, p=0.2675
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================

TCGA-COAD TIRAP 

[1] 21
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2     0.65     2.804      4.26
strata=LOW  3        3     4.35     0.419      4.26

 Chisq= 4.3  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

                coef  exp(coef)   se(coef)      z     p
strataLOW -2.232e+01  2.031e-10  3.308e+04 -0.001 0.999

Likelihood ratio test=4.61  on 1 df, p=0.03188
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================

TCGA-COAD SCAF11 

[1] 22
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4      3.8    0.0100    0.0262
strata=LOW  3        3      3.2    0.0119    0.0262

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.1336    0.8749   0.8268 -0.162 0.872

Likelihood ratio test=0.03  on 1 df, p=0.8716
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD NLRP6 

[1] 23
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     2.87   0.00587    0.0101
strata=LOW  5        5     5.13   0.00328    0.0101

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

              coef exp(coef) se(coef)      z    p
strataLOW -0.07751   0.92542  0.77060 -0.101 0.92

Likelihood ratio test=0.01  on 1 df, p=0.92
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD AIM2 

[1] 24
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     4.04     0.266     0.636
strata=LOW  5        5     3.96     0.271     0.636

 Chisq= 0.6  on 1 degrees of freedom, p= 0.4 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.6599    1.9347   0.8422 0.784 0.433

Likelihood ratio test=0.66  on 1 df, p=0.4153
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD CASP6 

[1] 25
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2     1.85   0.01176    0.0172
strata=LOW  6        6     6.15   0.00354    0.0172

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.1145    0.8918   0.8720 -0.131 0.896

Likelihood ratio test=0.02  on 1 df, p=0.8962
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD NLRP2 

[1] 26
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2     3.35     0.546      1.32
strata=LOW  5        5     3.65     0.501      1.32

 Chisq= 1.3  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

           coef exp(coef) se(coef)     z     p
strataLOW 1.199     3.318    1.105 1.085 0.278

Likelihood ratio test=1.48  on 1 df, p=0.2236
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD IRF2 

[1] 27
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     1.44     1.677       2.4
strata=LOW  5        5     6.56     0.369       2.4

 Chisq= 2.4  on 1 degrees of freedom, p= 0.1 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -1.3355    0.2630   0.9231 -1.447 0.148

Likelihood ratio test=2.13  on 1 df, p=0.1445
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD PJVK 

[1] 28
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2     1.62    0.0909     0.141
strata=LOW  4        4     4.38    0.0335     0.141

 Chisq= 0.1  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.3503    0.7045   0.9368 -0.374 0.708

Likelihood ratio test=0.14  on 1 df, p=0.712
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD CASP5 

[1] 29
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=4, 18 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     3.75      0.15         3
strata=LOW  1        1     0.25      2.25         3

 Chisq= 3  on 1 degrees of freedom, p= 0.08 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

               coef exp(coef)  se(coef)     z p
strataLOW 2.208e+01 3.903e+09 3.607e+04 0.001 1

Likelihood ratio test=2.77  on 1 df, p=0.09589
n= 4, number of events= 4 
   (18 observations deleted due to missingness)


============================

TCGA-COAD NLRP1 

[1] 30
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3      3.5    0.0702     0.172
strata=LOW  4        4      3.5    0.0700     0.172

 Chisq= 0.2  on 1 degrees of freedom, p= 0.7 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z    p
strataLOW 0.3601    1.4335   0.8738 0.412 0.68

Likelihood ratio test=0.18  on 1 df, p=0.6751
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

TCGA-COAD CASP9 

[1] 31
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=9, 13 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 5        5     3.61     0.535      1.02
strata=LOW  4        4     5.39     0.358      1.02

 Chisq= 1  on 1 degrees of freedom, p= 0.3 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.7416    0.4763   0.7486 -0.991 0.322

Likelihood ratio test=1.02  on 1 df, p=0.3124
n= 9, number of events= 9 
   (13 observations deleted due to missingness)


============================

TCGA-COAD PLCG1 

[1] 32
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=8, 14 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4     4.83     0.142      0.48
strata=LOW  4        4     3.17     0.216      0.48

 Chisq= 0.5  on 1 degrees of freedom, p= 0.5 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

            coef exp(coef) se(coef)     z     p
strataLOW 0.6053    1.8317   0.8851 0.684 0.494

Likelihood ratio test=0.49  on 1 df, p=0.483
n= 8, number of events= 8 
   (14 observations deleted due to missingness)


============================

TCGA-COAD IL18 

[1] 33
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=6, 16 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     2.43     0.132     0.265
strata=LOW  3        3     3.57     0.090     0.265

 Chisq= 0.3  on 1 degrees of freedom, p= 0.6 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)     z    p
strataLOW -0.4730    0.6231   0.9269 -0.51 0.61

Likelihood ratio test=0.27  on 1 df, p=0.6059
n= 6, number of events= 6 
   (16 observations deleted due to missingness)


============================

TCGA-COAD DPP8 

[1] 34
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=7, 15 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 4        4      3.8    0.0100    0.0262
strata=LOW  3        3      3.2    0.0119    0.0262

 Chisq= 0  on 1 degrees of freedom, p= 0.9 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

             coef exp(coef) se(coef)      z     p
strataLOW -0.1336    0.8749   0.8268 -0.162 0.872

Likelihood ratio test=0.03  on 1 df, p=0.8716
n= 7, number of events= 7 
   (15 observations deleted due to missingness)


============================

Display the results only for genes where a significant difference in survival has been reported.

significant_genes
[1] "IRF1"  "TIRAP"
num_significant_genes <- length(significant_genes)

if (num_significant_genes > 0) {
  for (i in 1 : num_significant_genes) {
    project <- significant_projects[[i]]
    gene <- significant_genes[[i]]
    
    cat(project, gene, "\n\n")
    gene_df <- construct_gene_df(gene, project)
    
    fit <- compute_surival_fit(gene_df)
    survival <- compute_survival_diff(gene_df)
    cox <- compute_cox(gene_df)
    print(survival)
    cat("\n")
    print(cox)
    print(plot_survival(fit))
    
    cat("\n\n============================\n\n")
  } 
}
TCGA-COAD IRF1 
Warning: Loglik converged before variable  1 ; coefficient may be infinite. 
Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 3        3     4.35     0.419      4.26
strata=LOW  2        2     0.65     2.804      4.26

 Chisq= 4.3  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

               coef exp(coef)  se(coef)     z     p
strataLOW 2.232e+01 4.923e+09 3.308e+04 0.001 0.999

Likelihood ratio test=4.61  on 1 df, p=0.03188
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================

TCGA-COAD TIRAP 

Call:
survdiff(formula = Surv(overall_survival, deceased) ~ strata, 
    data = gene_df)

n=5, 17 observations deleted due to missingness.

            N Observed Expected (O-E)^2/E (O-E)^2/V
strata=HIGH 2        2     0.65     2.804      4.26
strata=LOW  3        3     4.35     0.419      4.26

 Chisq= 4.3  on 1 degrees of freedom, p= 0.04 

Call:
coxph(formula = Surv(overall_survival, deceased) ~ strata, data = gene_df)

                coef  exp(coef)   se(coef)      z     p
strataLOW -2.232e+01  2.031e-10  3.308e+04 -0.001 0.999

Likelihood ratio test=4.61  on 1 df, p=0.03188
n= 5, number of events= 5 
   (17 observations deleted due to missingness)


============================


  1. De La Salle University, Manila, Philippines, ↩︎

  2. De La Salle University, Manila, Philippines, ↩︎

LS0tDQp0aXRsZTogIlN1cnZpdmFsIEFuYWx5c2lzIg0Kc3VidGl0bGU6ICJDb2xvcmVjdGFsIENhbmNlciB8IFB5cm9wdG9zaXMgfCBVbmlxdWUgR2VuZXMgcGVyIFJDRCBUeXBlIHwgR2VuZSBFeHByZXNzaW9uIG9mIE5vcm1hbCBTYW1wbGVzIg0KYXV0aG9yOiANCiAgLSBNYXJrIEVkd2FyZCBNLiBHb256YWxlc15bRGUgTGEgU2FsbGUgVW5pdmVyc2l0eSwgTWFuaWxhLCBQaGlsaXBwaW5lcywgZ29uemFsZXMubWFya2Vkd2FyZEBnbWFpbC5jb21dDQogIC0gRHIuIEFuaXNoIE0uUy4gU2hyZXN0aGFeW0RlIExhIFNhbGxlIFVuaXZlcnNpdHksIE1hbmlsYSwgUGhpbGlwcGluZXMsIGFuaXNoLnNocmVzdGhhQGRsc3UuZWR1LnBoXQ0Kb3V0cHV0OiBodG1sX25vdGVib29rDQotLS0NCg0KIyMgSS4gUHJlbGltaW5hcmllcw0KDQojIyMgTG9hZGluZyBsaWJyYXJpZXMNCg0KYGBge3IsIHdhcm5pbmc9RkFMU0UsIG1lc3NhZ2U9RkFMU0V9DQpsaWJyYXJ5KCJ0aWR5dmVyc2UiKQ0KbGlicmFyeSgidGliYmxlIikNCmxpYnJhcnkoIm1zaWdkYnIiKQ0KbGlicmFyeSgiZ2dwbG90MiIpDQpsaWJyYXJ5KCJUQ0dBYmlvbGlua3MiKQ0KbGlicmFyeSgiUk5Bc2VxUUMiKQ0KbGlicmFyeSgiREVTZXEyIikNCmxpYnJhcnkoImVuc2VtYmxkYiIpDQpsaWJyYXJ5KCJwdXJyciIpDQpsaWJyYXJ5KCJtYWdyaXR0ciIpDQpsaWJyYXJ5KCJ2c24iKQ0KbGlicmFyeSgibWF0cml4U3RhdHMiKQ0KbGlicmFyeSgiZHBseXIiKQ0KbGlicmFyeSgiZ3JleCIpDQpsaWJyYXJ5KCJzdXJ2bWluZXIiKQ0KbGlicmFyeSgic3Vydml2YWwiKQ0KYGBgDQoNCiMjIElJLiBEb3dubG9hZGluZyB0aGUgVENHQSBnZW5lIGV4cHJlc3Npb24gZGF0YSANCg0KQ3JlYXRlIGEgZnVuY3Rpb24gZm9yIGRvd25sb2FkaW5nIFRDR0EgZ2VuZSBleHByZXNzaW9uIGRhdGEuIA0KDQpGb3IgbW9yZSBkZXRhaWxlZCBkb2N1bWVudGF0aW9uLCByZWZlciB0byBgMi4gRGlmZmVyZW50aWFsIEdlbmUgRXhwcmVzc2lvbiBBbmFseXNpcyAtIFRDR0EuUm1kYC4NCg0KYGBge3J9DQpHRENfRElSID0gIi4uL2RhdGEvcHVibGljL0dEQ2RhdGEiDQoNCnF1ZXJ5X2FuZF9maWx0ZXJfc2FtcGxlcyA8LSBmdW5jdGlvbihwcm9qZWN0KSB7DQogIHF1ZXJ5X3R1bW9yIDwtIEdEQ3F1ZXJ5KA0KICAgIHByb2plY3QgPSBwcm9qZWN0LA0KICAgIGRhdGEuY2F0ZWdvcnkgPSAiVHJhbnNjcmlwdG9tZSBQcm9maWxpbmciLA0KICAgIGRhdGEudHlwZSA9ICJHZW5lIEV4cHJlc3Npb24gUXVhbnRpZmljYXRpb24iLA0KICAgIGV4cGVyaW1lbnRhbC5zdHJhdGVneSA9ICJSTkEtU2VxIiwNCiAgICB3b3JrZmxvdy50eXBlID0gIlNUQVIgLSBDb3VudHMiLA0KICAgIGFjY2VzcyA9ICJvcGVuIiwNCiAgICBzYW1wbGUudHlwZSA9ICJQcmltYXJ5IFR1bW9yIg0KICApDQogIHR1bW9yIDwtIGdldFJlc3VsdHMocXVlcnlfdHVtb3IpDQoNCiAgcXVlcnlfbm9ybWFsIDwtIEdEQ3F1ZXJ5KA0KICAgIHByb2plY3QgPSBwcm9qZWN0LA0KICAgIGRhdGEuY2F0ZWdvcnkgPSAiVHJhbnNjcmlwdG9tZSBQcm9maWxpbmciLA0KICAgIGRhdGEudHlwZSA9ICJHZW5lIEV4cHJlc3Npb24gUXVhbnRpZmljYXRpb24iLA0KICAgIGV4cGVyaW1lbnRhbC5zdHJhdGVneSA9ICJSTkEtU2VxIiwNCiAgICB3b3JrZmxvdy50eXBlID0gIlNUQVIgLSBDb3VudHMiLA0KICAgIGFjY2VzcyA9ICJvcGVuIiwNCiAgICBzYW1wbGUudHlwZSA9ICJTb2xpZCBUaXNzdWUgTm9ybWFsIg0KICApDQogIG5vcm1hbCA8LSBnZXRSZXN1bHRzKHF1ZXJ5X25vcm1hbCkNCg0KICBzdWJtaXR0ZXJfaWRzIDwtIGlubmVyX2pvaW4odHVtb3IsIG5vcm1hbCwgYnkgPSAiY2FzZXMuc3VibWl0dGVyX2lkIikgJT4lDQogICAgZHBseXI6OnNlbGVjdChjYXNlcy5zdWJtaXR0ZXJfaWQpDQogIHR1bW9yIDwtIHR1bW9yICU+JQ0KICAgIGRwbHlyOjpmaWx0ZXIoY2FzZXMuc3VibWl0dGVyX2lkICVpbiUgc3VibWl0dGVyX2lkcyRjYXNlcy5zdWJtaXR0ZXJfaWQpDQogIG5vcm1hbCA8LSBub3JtYWwgJT4lDQogICAgZHBseXI6OmZpbHRlcihjYXNlcy5zdWJtaXR0ZXJfaWQgJWluJSBzdWJtaXR0ZXJfaWRzJGNhc2VzLnN1Ym1pdHRlcl9pZCkNCg0KICBzYW1wbGVzIDwtIHJiaW5kKHR1bW9yLCBub3JtYWwpDQogIHVuaXF1ZShzYW1wbGVzJHNhbXBsZV90eXBlKQ0KDQogIHF1ZXJ5X3Byb2plY3QgPC0gR0RDcXVlcnkoDQogICAgcHJvamVjdCA9IHByb2plY3QsDQogICAgZGF0YS5jYXRlZ29yeSA9ICJUcmFuc2NyaXB0b21lIFByb2ZpbGluZyIsDQogICAgZGF0YS50eXBlID0gIkdlbmUgRXhwcmVzc2lvbiBRdWFudGlmaWNhdGlvbiIsDQogICAgZXhwZXJpbWVudGFsLnN0cmF0ZWd5ID0gIlJOQS1TZXEiLA0KICAgIHdvcmtmbG93LnR5cGUgPSAiU1RBUiAtIENvdW50cyIsDQogICAgYWNjZXNzID0gIm9wZW4iLA0KICAgIHNhbXBsZS50eXBlID0gYygiU29saWQgVGlzc3VlIE5vcm1hbCIsICJQcmltYXJ5IFR1bW9yIiksDQogICAgYmFyY29kZSA9IGFzLmxpc3Qoc2FtcGxlcyRzYW1wbGUuc3VibWl0dGVyX2lkKQ0KICApDQoNCiAgIyBJZiB0aGlzIGlzIHlvdXIgZmlyc3QgdGltZSBydW5uaW5nIHRoaXMgbm90ZWJvb2sgKGkuZS4sIHlvdSBoYXZlIG5vdCB5ZXQgZG93bmxvYWRlZCB0aGUgcmVzdWx0cyBvZiB0aGUgcXVlcnkgaW4gdGhlIHByZXZpb3VzIGJsb2NrKSwNCiAgIyB1bmNvbW1lbnQgdGhlIGNvZGUgYmxvY2sgYmVsb3cNCg0KICAjIEdEQ2Rvd25sb2FkKA0KICAjICAgcXVlcnlfY29hZCwNCiAgIyAgIGRpcmVjdG9yeSA9IEdEQ19ESVINCiAgIyApDQoNCiAgcmV0dXJuKGxpc3Qoc2FtcGxlcyA9IHNhbXBsZXMsIHF1ZXJ5X3Byb2plY3QgPSBxdWVyeV9wcm9qZWN0KSkNCn0NCmBgYA0KDQpEb3dubG9hZCB0aGUgVENHQSBnZW5lIGV4cHJlc3Npb24gZGF0YSBmb3IgY29sb3JlY3RhbCBjYW5jZXIgKFRDR0EtQ09BRCkuDQoNCmBgYHtyLCBlY2hvID0gVFJVRSwgbWVzc2FnZSA9IEZBTFNFLCByZXN1bHRzPSJoaWRlIn0NCnByb2plY3RzIDwtIGMoIlRDR0EtQ09BRCIpDQoNCndpdGhfcmVzdWx0c19wcm9qZWN0cyA8LSBjKCkNCg0Kc2FtcGxlcyA8LSBsaXN0KCkNCnByb2plY3RfZGF0YSA8LSBsaXN0KCkNCg0KZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogIHJlc3VsdCA8LSB0cnlDYXRjaCgNCiAgICB7DQogICAgICByZXN1bHQgPC0gcXVlcnlfYW5kX2ZpbHRlcl9zYW1wbGVzKHByb2plY3QpDQogICAgICBzYW1wbGVzW1twcm9qZWN0XV0gPC0gcmVzdWx0JHNhbXBsZXMNCiAgICAgIHByb2plY3RfZGF0YVtbcHJvamVjdF1dIDwtIHJlc3VsdCRxdWVyeV9wcm9qZWN0DQoNCiAgICAgIHdpdGhfcmVzdWx0c19wcm9qZWN0cyA8LSBjKHdpdGhfcmVzdWx0c19wcm9qZWN0cywgcHJvamVjdCkNCiAgICB9LA0KICAgIGVycm9yID0gZnVuY3Rpb24oZSkgew0KDQogICAgfQ0KICApDQp9DQpgYGANCg0KUnVubmluZyB0aGUgY29kZSBibG9jayBhYm92ZSBzaG91bGQgZ2VuZXJhdGUgYW5kIHBvcHVsYXRlIGEgZGlyZWN0b3J5IG5hbWVkIGBHRENkYXRhYC4NCg0KIyMgSUlJLiBEYXRhIHByZXByb2Nlc3NpbmcNCg0KQ29uc3RydWN0IHRoZSBSTkEtc2VxIGNvdW50IG1hdHJpeCBmb3IgZWFjaCBjYW5jZXIgdHlwZS4NCg0KYGBge3IsIGVjaG8gPSBUUlVFLCBtZXNzYWdlID0gRkFMU0UsIHJlc3VsdHM9ImhpZGUifQ0KdGNnYV9kYXRhIDwtIGxpc3QoKQ0KdGNnYV9tYXRyaXggPC0gbGlzdCgpDQoNCnByb2plY3RzIDwtIHdpdGhfcmVzdWx0c19wcm9qZWN0cw0KZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogIHRjZ2FfZGF0YVtbcHJvamVjdF1dIDwtIEdEQ3ByZXBhcmUoDQogICAgcHJvamVjdF9kYXRhW1twcm9qZWN0XV0sIA0KICAgIGRpcmVjdG9yeSA9IEdEQ19ESVIsDQogICAgc3VtbWFyaXplZEV4cGVyaW1lbnQgPSBUUlVFDQogICkNCn0NCmBgYA0KDQpgYGB7cn0NCmZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICBjb3VudF9tYXRyaXggPC0gYXNzYXkodGNnYV9kYXRhW1twcm9qZWN0XV0sICJ1bnN0cmFuZGVkIikNCg0KICAjIFJlbW92ZSBkdXBsaWNhdGUgZW50cmllcw0KICBjb3VudF9tYXRyaXhfZGYgPC0gZGF0YS5mcmFtZShjb3VudF9tYXRyaXgpDQogIGNvdW50X21hdHJpeF9kZiA8LSBjb3VudF9tYXRyaXhfZGZbIWR1cGxpY2F0ZWQoY291bnRfbWF0cml4X2RmKSwgXQ0KICBjb3VudF9tYXRyaXggPC0gZGF0YS5tYXRyaXgoY291bnRfbWF0cml4X2RmKQ0KICByb3duYW1lcyhjb3VudF9tYXRyaXgpIDwtIGNsZWFuaWQocm93bmFtZXMoY291bnRfbWF0cml4KSkNCiAgY291bnRfbWF0cml4IDwtIGNvdW50X21hdHJpeFshKGR1cGxpY2F0ZWQocm93bmFtZXMoY291bnRfbWF0cml4KSkgfCBkdXBsaWNhdGVkKHJvd25hbWVzKGNvdW50X21hdHJpeCksIGZyb21MYXN0ID0gVFJVRSkpLCBdDQoNCiAgdGNnYV9tYXRyaXhbW3Byb2plY3RdXSA8LSBjb3VudF9tYXRyaXgNCn0NCmBgYA0KRm9ybWF0IHRoZSBgc2FtcGxlc2AgdGFibGUgc28gdGhhdCBpdCBjYW4gYmUgZmVkIGFzIGlucHV0IHRvIERFU2VxMi4NCg0KYGBge3J9DQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dKSA8LSBzYW1wbGVzW1twcm9qZWN0XV0kY2FzZXMNCiAgc2FtcGxlc1tbcHJvamVjdF1dIDwtIHNhbXBsZXNbW3Byb2plY3RdXSAlPiUNCiAgICBkcGx5cjo6c2VsZWN0KGNhc2UgPSAiY2FzZXMuc3VibWl0dGVyX2lkIiwgdHlwZSA9ICJzYW1wbGVfdHlwZSIpDQogIHNhbXBsZXNbW3Byb2plY3RdXSR0eXBlIDwtIHN0cl9yZXBsYWNlKHNhbXBsZXNbW3Byb2plY3RdXSR0eXBlLCAiU29saWQgVGlzc3VlIE5vcm1hbCIsICJub3JtYWwiKQ0KICBzYW1wbGVzW1twcm9qZWN0XV0kdHlwZSA8LSBzdHJfcmVwbGFjZShzYW1wbGVzW1twcm9qZWN0XV0kdHlwZSwgIlByaW1hcnkgVHVtb3IiLCAidHVtb3IiKQ0KfQ0KYGBgDQoNCkRFU2VxMiByZXF1aXJlcyB0aGUgcm93IG5hbWVzIG9mIGBzYW1wbGVzYCBzaG91bGQgYmUgaWRlbnRpY2FsIHRvIHRoZSBjb2x1bW4gbmFtZXMgb2YgYGNvdW50X21hdHJpeGAuDQoNCmBgYHtyLCBlY2hvID0gVFJVRSwgcmVzdWx0cz0iaGlkZSJ9DQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgY29sbmFtZXModGNnYV9tYXRyaXhbW3Byb2plY3RdXSkgPC0gZ3N1Yih4ID0gY29sbmFtZXModGNnYV9tYXRyaXhbW3Byb2plY3RdXSksIHBhdHRlcm4gPSAiXFwuIiwgcmVwbGFjZW1lbnQgPSAiLSIpDQogIHRjZ2FfbWF0cml4W1twcm9qZWN0XV0gPC0gdGNnYV9tYXRyaXhbW3Byb2plY3RdXVssIHJvd25hbWVzKHNhbXBsZXNbW3Byb2plY3RdXSldDQoNCiAgIyBTYW5pdHkgY2hlY2sNCiAgcHJpbnQoYWxsKGNvbG5hbWVzKHRjZ2FfbWF0cml4W1twcm9qZWN0XV0pID09IHJvd25hbWVzKHNhbXBsZXNbW3Byb2plY3RdXSkpKQ0KfQ0KYGBgDQoNCiMjIElWLiBEaWZmZXJlbnRpYWwgZ2VuZSBleHByZXNzaW9uIGFuYWx5c2lzDQoNCkZvciBtb3JlIGRldGFpbGVkIGRvY3VtZW50YXRpb24gb24gb2J0YWluaW5nIHRoZSBnZW5lIHNldCwgcmVmZXIgdG8gYDcuIERpZmZlcmVudGlhbCBHZW5lIEV4cHJlc3Npb24gQW5hbHlzaXMgLSBUQ0dBIC0gUGFuLWNhbmNlciAtIFVuaXF1ZSBHZW5lcy5SbWRgLg0KDQpgYGB7cn0NClJDRGRiIDwtICIuLi9kYXRhL3B1YmxpYy9yY2QtZ2VuZS1saXN0L3VuaXF1ZS1nZW5lcy9uZWNyb3B0b3Npcy1mZXJyb3B0b3Npcy1weXJvcHRvc2lzLyINCmBgYA0KDQpXcml0ZSB1dGlsaXR5IGZ1bmN0aW9ucyBmb3IgZmlsdGVyaW5nIHRoZSBnZW5lIHNldHMsIHBlcmZvcm1pbmcgZGlmZmVyZW50aWFsIGdlbmUgZXhwcmVzc2lvbiBhbmFseXNpcywgcGxvdHRpbmcgdGhlIHJlc3VsdHMsIGFuZCBwZXJmb3JtaW5nIHZhcmlhbmNlLXN0YWJpbGl6aW5nIHRyYW5zZm9ybWF0aW9uLg0KDQpgYGB7cn0NCmZpbHRlcl9nZW5lX3NldF9hbmRfcGVyZm9ybV9kZ2VhIDwtIGZ1bmN0aW9uKGdlbmVzKSB7DQogIHRjZ2FfcmNkIDwtIGxpc3QoKQ0KDQogIGZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICAgIHJvd25hbWVzKGdlbmVzKSA8LSBnZW5lcyRnZW5lX2lkDQogICAgdGNnYV9yY2RbW3Byb2plY3RdXSA8LSB0Y2dhX21hdHJpeFtbcHJvamVjdF1dW3Jvd25hbWVzKHRjZ2FfbWF0cml4W1twcm9qZWN0XV0pICVpbiUgZ2VuZXMkZ2VuZV9pZCwgXQ0KICAgIHRjZ2FfcmNkW1twcm9qZWN0XV0gPC0gdGNnYV9yY2RbW3Byb2plY3RdXVssIHJvd25hbWVzKHNhbXBsZXNbW3Byb2plY3RdXSldDQogIH0NCg0KICBkZHNfcmNkIDwtIGxpc3QoKQ0KICByZXNfcmNkIDwtIGxpc3QoKQ0KDQogIGZvciAocHJvamVjdCBpbiBwcm9qZWN0cykgew0KICAgIHByaW50KHByb2plY3QpDQogICAgcHJpbnQoIj09PT09PT09PT09PT0iKQ0KICAgIGRkcyA8LSBERVNlcURhdGFTZXRGcm9tTWF0cml4KA0KICAgICAgY291bnREYXRhID0gdGNnYV9yY2RbW3Byb2plY3RdXSwNCiAgICAgIGNvbERhdGEgPSBzYW1wbGVzW1twcm9qZWN0XV0sDQogICAgICBkZXNpZ24gPSB+dHlwZQ0KICAgICkNCiAgICBkZHMgPC0gZmlsdGVyX2dlbmVzKGRkcywgbWluX2NvdW50ID0gMTApDQogICAgZGRzJHR5cGUgPC0gcmVsZXZlbChkZHMkdHlwZSwgcmVmID0gIm5vcm1hbCIpDQogICAgZGRzX3JjZFtbcHJvamVjdF1dIDwtIERFU2VxKGRkcykNCiAgICByZXNfcmNkW1twcm9qZWN0XV0gPC0gcmVzdWx0cyhkZHNfcmNkW1twcm9qZWN0XV0pDQogIH0NCg0KICBkZXNlcS5iYmwuZGF0YSA8LSBsaXN0KCkNCg0KICBmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgICBkZXNlcS5yZXN1bHRzIDwtIHJlc19yY2RbW3Byb2plY3RdXQ0KICAgIGRlc2VxLmJibC5kYXRhW1twcm9qZWN0XV0gPC0gZGF0YS5mcmFtZSgNCiAgICAgIHJvdy5uYW1lcyA9IHJvd25hbWVzKGRlc2VxLnJlc3VsdHMpLA0KICAgICAgYmFzZU1lYW4gPSBkZXNlcS5yZXN1bHRzJGJhc2VNZWFuLA0KICAgICAgbG9nMkZvbGRDaGFuZ2UgPSBkZXNlcS5yZXN1bHRzJGxvZzJGb2xkQ2hhbmdlLA0KICAgICAgbGZjU0UgPSBkZXNlcS5yZXN1bHRzJGxmY1NFLA0KICAgICAgc3RhdCA9IGRlc2VxLnJlc3VsdHMkc3RhdCwNCiAgICAgIHB2YWx1ZSA9IGRlc2VxLnJlc3VsdHMkcHZhbHVlLA0KICAgICAgcGFkaiA9IGRlc2VxLnJlc3VsdHMkcGFkaiwNCiAgICAgIGNhbmNlcl90eXBlID0gcHJvamVjdCwNCiAgICAgIGdlbmVfc3ltYm9sID0gZ2VuZXNbcm93bmFtZXMoZGVzZXEucmVzdWx0cyksICJnZW5lIl0NCiAgICApDQogIH0NCg0KICBkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCA8LSBiaW5kX3Jvd3MoZGVzZXEuYmJsLmRhdGEpDQogIGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkIDwtIGRwbHlyOjpmaWx0ZXIoZGVzZXEuYmJsLmRhdGEuY29tYmluZWQsIGFicyhsb2cyRm9sZENoYW5nZSkgPj0gMS41ICYgcGFkaiA8IDAuMDUpDQoNCiAgcmV0dXJuKGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkKQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KcGxvdF9kZ2VhIDwtIGZ1bmN0aW9uKGRlc2VxLmJibC5kYXRhLmNvbWJpbmVkKSB7DQogIHNpemVzIDwtIGMoIjwxMF4tMTUiID0gNCwgIjEwXi0xMCIgPSAzLCAiMTBeLTUiID0gMiwgIjAuMDUiID0gMSkNCg0KICBkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCA8LSBkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCAlPiUNCiAgICBtdXRhdGUoZmRyX2NhdGVnb3J5ID0gY3V0KHBhZGosDQogICAgICBicmVha3MgPSBjKC1JbmYsIDFlLTE1LCAxZS0xMCwgMWUtNSwgMC4wNSksDQogICAgICBsYWJlbHMgPSBjKCI8MTBeLTE1IiwgIjEwXi0xMCIsICIxMF4tNSIsICIwLjA1IiksDQogICAgICByaWdodCA9IEZBTFNFDQogICAgKSkNCg0KICB0b3BfZ2VuZXMgPC0gZGVzZXEuYmJsLmRhdGEuY29tYmluZWQgJT4lDQogICAgZ3JvdXBfYnkoY2FuY2VyX3R5cGUpICU+JQ0KICAgIG11dGF0ZShyYW5rID0gcmFuaygtYWJzKGxvZzJGb2xkQ2hhbmdlKSkpICU+JQ0KICAgIGRwbHlyOjpmaWx0ZXIocmFuayA8PSAxMCkgJT4lDQogICAgdW5ncm91cCgpDQoNCiAgZ2dwbG90KHRvcF9nZW5lcywgYWVzKHkgPSBjYW5jZXJfdHlwZSwgeCA9IGdlbmVfc3ltYm9sLCBzaXplID0gZmRyX2NhdGVnb3J5LCBmaWxsID0gbG9nMkZvbGRDaGFuZ2UpKSArDQogICAgZ2VvbV9wb2ludChhbHBoYSA9IDAuNSwgc2hhcGUgPSAyMSwgY29sb3IgPSAiYmxhY2siKSArDQogICAgc2NhbGVfc2l6ZV9tYW51YWwodmFsdWVzID0gc2l6ZXMpICsNCiAgICBzY2FsZV9maWxsX2dyYWRpZW50Mihsb3cgPSAiYmx1ZSIsIG1pZCA9ICJ3aGl0ZSIsIGhpZ2ggPSAicmVkIiwgbGltaXRzID0gYyhtaW4oZGVzZXEuYmJsLmRhdGEuY29tYmluZWQkbG9nMkZvbGRDaGFuZ2UpLCBtYXgoZGVzZXEuYmJsLmRhdGEuY29tYmluZWQkbG9nMkZvbGRDaGFuZ2UpKSkgKw0KICAgIHRoZW1lX21pbmltYWwoKSArDQogICAgdGhlbWUoDQogICAgICBheGlzLnRleHQueCA9IGVsZW1lbnRfdGV4dChzaXplID0gOSwgYW5nbGUgPSA5MCwgaGp1c3QgPSAxKQ0KICAgICkgKw0KICAgIHRoZW1lKGxlZ2VuZC5wb3NpdGlvbiA9ICJib3R0b20iKSArDQogICAgdGhlbWUobGVnZW5kLnBvc2l0aW9uID0gImJvdHRvbSIpICsNCiAgICBsYWJzKHNpemUgPSAiQWRqdXN0ZWQgcC12YWx1ZSIsIGZpbGwgPSAibG9nMiBGQyIsIHkgPSAiQ2FuY2VyIHR5cGUiLCB4ID0gIkdlbmUiKQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KcGVyZm9ybV92c2QgPC0gZnVuY3Rpb24oZ2VuZXMpIHsNCiAgdGNnYV9yY2QgPC0gbGlzdCgpDQoNCiAgZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogICAgcm93bmFtZXMoZ2VuZXMpIDwtIGdlbmVzJGdlbmVfaWQNCiAgICB0Y2dhX3JjZFtbcHJvamVjdF1dIDwtIHRjZ2FfbWF0cml4W1twcm9qZWN0XV1bcm93bmFtZXModGNnYV9tYXRyaXhbW3Byb2plY3RdXSkgJWluJSBnZW5lcyRnZW5lX2lkLCBdDQogICAgdGNnYV9yY2RbW3Byb2plY3RdXSA8LSB0Y2dhX3JjZFtbcHJvamVjdF1dWywgcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dKV0NCiAgfQ0KDQogIHZzZF9yY2QgPC0gbGlzdCgpDQoNCiAgZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogICAgcHJpbnQocHJvamVjdCkNCiAgICBwcmludCgiPT09PT09PT09PT09PSIpDQogICAgZGRzIDwtIERFU2VxRGF0YVNldEZyb21NYXRyaXgoDQogICAgICBjb3VudERhdGEgPSB0Y2dhX3JjZFtbcHJvamVjdF1dLA0KICAgICAgY29sRGF0YSA9IHNhbXBsZXNbW3Byb2plY3RdXSwNCiAgICAgIGRlc2lnbiA9IH50eXBlDQogICAgKQ0KICAgIGRkcyA8LSBmaWx0ZXJfZ2VuZXMoZGRzLCBtaW5fY291bnQgPSAxMCkNCg0KICAgICMgUGVyZm9ybSB2YXJpYW5jZSBzdGFiaWxpemF0aW9uDQogICAgZGRzIDwtIGVzdGltYXRlU2l6ZUZhY3RvcnMoZGRzKQ0KICAgIG5zdWIgPC0gc3VtKHJvd01lYW5zKGNvdW50cyhkZHMsIG5vcm1hbGl6ZWQgPSBUUlVFKSkgPiAxMCkNCiAgICB2c2QgPC0gdnN0KGRkcywgbnN1YiA9IG5zdWIpDQogICAgdnNkX3JjZFtbcHJvamVjdF1dIDwtIGFzc2F5KHZzZCkNCiAgfQ0KDQogIHJldHVybih2c2RfcmNkKQ0KfQ0KYGBgDQoNCg0KIyMjIyBQeXJvcHRvc2lzDQoNCkZldGNoIHRoZSBnZW5lIHNldCBvZiBpbnRlcmVzdC4NCg0KYGBge3J9DQpnZW5lcyA8LSByZWFkLmNzdihwYXN0ZTAoUkNEZGIsICJQeXJvcHRvc2lzLmNzdiIpKQ0KcHJpbnQoZ2VuZXMpDQpnZW5lcyRnZW5lX2lkIDwtIGNsZWFuaWQoZ2VuZXMkZ2VuZV9pZCkNCmdlbmVzIDwtIGRpc3RpbmN0KGdlbmVzLCBnZW5lX2lkLCAua2VlcF9hbGwgPSBUUlVFKQ0KZ2VuZXMgPC0gc3Vic2V0KGdlbmVzLCBnZW5lX2lkICE9ICIiKQ0KZ2VuZXMNCmBgYA0KDQpGaWx0ZXIgdGhlIGdlbmVzIHRvIGluY2x1ZGUgb25seSB0aG9zZSBpbiB0aGUgZ2VuZSBzZXQgb2YgaW50ZXJlc3QsIGFuZCB0aGVuIHBlcmZvcm0gZGlmZmVyZW50aWFsIGdlbmUgZXhwcmVzc2lvbiBhbmFseXNpcy4NCg0KYGBge3J9DQpkZXNlcS5iYmwuZGF0YS5jb21iaW5lZCA8LSBmaWx0ZXJfZ2VuZV9zZXRfYW5kX3BlcmZvcm1fZGdlYShnZW5lcykNCmRlc2VxLmJibC5kYXRhLmNvbWJpbmVkDQpgYGANCg0KUGxvdCB0aGUgcmVzdWx0cy4NCg0KYGBge3J9DQpwbG90X2RnZWEoZGVzZXEuYmJsLmRhdGEuY29tYmluZWQpDQpgYGANClBlcmZvcm0gdmFyaWFuY2Utc3RhYmlsaXppbmcgdHJhbnNmb3JtYXRpb24gZm9yIGZ1cnRoZXIgZG93bnN0cmVhbSBhbmFseXNpcyAoaS5lLiwgZm9yIHN1cnZpdmFsIGFuYWx5c2lzKS4NCg0KYGBge3IsIHdhcm5pbmc9RkFMU0V9DQp2c2QgPC0gcGVyZm9ybV92c2QoZ2VuZXMpDQpgYGANCg0KIyMgVi4gRG93bmxvYWRpbmcgdGhlIGNsaW5pY2FsIGRhdGENCg0KRG93bmxvYWQgY2xpbmljYWwgZGF0YSBmcm9tIFRDR0EsIGFuZCBwZXJmb3JtIHNvbWUgcHJlcHJvY2Vzc2luZzoNCi0gVGhlIGBkZWNlYXNlZGAgY29sdW1uIHNob3VsZCBiZSBgRkFMU0VgIGlmIHRoZSBwYXRpZW50IGlzIGFsaXZlIGFuZCBgVFJVRWAgb3RoZXJ3aXNlDQotIFRoZSBgb3ZlcmFsbF9zdXJ2aXZhbGAgY29sdW1uIHNob3VsZCByZWZsZWN0IHRoZSBmb2xsb3ctdXAgdGltZSBpZiB0aGUgcGF0aWVudCBpcyBhbGl2ZSBhbmQgdGhlIGRheXMgdG8gZGVhdGggb3RoZXJ3aXNlDQoNCmBgYHtyfQ0KZG93bmxvYWRfY2xpbmljYWxfZGF0YSA8LSBmdW5jdGlvbihwcm9qZWN0KSB7DQogIGNsaW5pY2FsX2RhdGEgPC0gR0RDcXVlcnlfY2xpbmljKHByb2plY3QpDQogIGNsaW5pY2FsX2RhdGEkZGVjZWFzZWQgPC0gaWZlbHNlKGNsaW5pY2FsX2RhdGEkdml0YWxfc3RhdHVzID09ICJBbGl2ZSIsIEZBTFNFLCBUUlVFKQ0KICBjbGluaWNhbF9kYXRhJG92ZXJhbGxfc3Vydml2YWwgPC0gaWZlbHNlKGNsaW5pY2FsX2RhdGEkdml0YWxfc3RhdHVzID09ICJBbGl2ZSIsDQogICAgY2xpbmljYWxfZGF0YSRkYXlzX3RvX2xhc3RfZm9sbG93X3VwLA0KICAgIGNsaW5pY2FsX2RhdGEkZGF5c190b19kZWF0aA0KICApDQoNCiAgcmV0dXJuKGNsaW5pY2FsX2RhdGEpDQp9DQpgYGANCg0KYGBge3J9DQp0Y2dhX2NsaW5pY2FsIDwtIGxpc3QoKQ0KZm9yIChwcm9qZWN0IGluIHByb2plY3RzKSB7DQogIHRjZ2FfY2xpbmljYWxbW3Byb2plY3RdXSA8LSBkb3dubG9hZF9jbGluaWNhbF9kYXRhKHByb2plY3QpDQp9DQpgYGANCg0KIyMgVkkuIFBlcmZvcm1pbmcgc3Vydml2YWwgYW5hbHlzaXMNCg0KV3JpdGUgdXRpbGl0eSBmdW5jdGlvbnMgZm9yIHBlcmZvcm1pbmcgc3Vydml2YWwgYW5hbHlzaXMuDQoNCg0KYGBge3J9DQpjb25zdHJ1Y3RfZ2VuZV9kZiA8LSBmdW5jdGlvbihnZW5lX29mX2ludGVyZXN0LCBwcm9qZWN0KSB7DQogIGdlbmVfZGYgPC0gdnNkW1twcm9qZWN0XV0gJT4lDQogICAgYXMuZGF0YS5mcmFtZSgpICU+JQ0KICAgIHJvd25hbWVzX3RvX2NvbHVtbih2YXIgPSAiZ2VuZV9pZCIpICU+JQ0KICAgIGdhdGhlcihrZXkgPSAiY2FzZV9pZCIsIHZhbHVlID0gImNvdW50cyIsIC1nZW5lX2lkKSAlPiUNCiAgICBsZWZ0X2pvaW4oLiwgZ2VuZXMsIGJ5ID0gImdlbmVfaWQiKSAlPiUNCiAgICBkcGx5cjo6ZmlsdGVyKGdlbmUgPT0gZ2VuZV9vZl9pbnRlcmVzdCkgJT4lDQogICAgZHBseXI6OmZpbHRlcihjYXNlX2lkICVpbiUgcm93bmFtZXMoc2FtcGxlc1tbcHJvamVjdF1dICU+JSBkcGx5cjo6ZmlsdGVyKHR5cGUgPT0gIm5vcm1hbCIpKSkNCg0KICBxMSA8LSBxdWFudGlsZShnZW5lX2RmJGNvdW50cywgcHJvYnMgPSAwLjI1KQ0KICBxMyA8LSBxdWFudGlsZShnZW5lX2RmJGNvdW50cywgcHJvYnMgPSAwLjc1KQ0KICBnZW5lX2RmJHN0cmF0YSA8LSBpZmVsc2UoZ2VuZV9kZiRjb3VudHMgPj0gcTMsICJISUdIIiwgaWZlbHNlKGdlbmVfZGYkY291bnRzIDw9IHExLCAiTE9XIiwgIk1JRERMRSIpKQ0KICBnZW5lX2RmIDwtIGdlbmVfZGYgJT4lIGRwbHlyOjpmaWx0ZXIoc3RyYXRhICVpbiUgYygiTE9XIiwgIkhJR0giKSkNCiAgZ2VuZV9kZiRjYXNlX2lkIDwtIHBhc3RlMChzYXBwbHkoc3Ryc3BsaXQoYXMuY2hhcmFjdGVyKGdlbmVfZGYkY2FzZV9pZCksICItIiksIGBbYCwgMSksICctJywNCiAgICAgICAgICAgICAgICAgICAgICAgICAgc2FwcGx5KHN0cnNwbGl0KGFzLmNoYXJhY3RlcihnZW5lX2RmJGNhc2VfaWQpLCAiLSIpLCBgW2AsIDIpLCAnLScsIA0KICAgICAgICAgICAgICAgICAgICAgICAgICBzYXBwbHkoc3Ryc3BsaXQoYXMuY2hhcmFjdGVyKGdlbmVfZGYkY2FzZV9pZCksICItIiksIGBbYCwgMykpDQogIGdlbmVfZGYgPC0gbWVyZ2UoZ2VuZV9kZiwgdGNnYV9jbGluaWNhbFtbcHJvamVjdF1dLCBieS54ID0gImNhc2VfaWQiLCBieS55ID0gInN1Ym1pdHRlcl9pZCIpDQogIA0KICByZXR1cm4oZ2VuZV9kZikNCn0NCmBgYA0KDQpgYGB7cn0NCmNvbXB1dGVfc3VyaXZhbF9maXQgPC0gZnVuY3Rpb24oZ2VuZV9kZikgew0KICByZXR1cm4gKHN1cnZmaXQoU3VydihvdmVyYWxsX3N1cnZpdmFsLCBkZWNlYXNlZCkgfiBzdHJhdGEsIGRhdGEgPSBnZW5lX2RmKSkNCn0NCmBgYA0KDQpgYGB7cn0NCmNvbXB1dGVfY294IDwtIGZ1bmN0aW9uKGdlbmVfZGYpIHsNCiAgcmV0dXJuIChjb3hwaChTdXJ2KG92ZXJhbGxfc3Vydml2YWwsIGRlY2Vhc2VkKSB+IHN0cmF0YSwgZGF0YT1nZW5lX2RmKSkNCn0NCmBgYA0KDQpgYGB7cn0NCnBsb3Rfc3Vydml2YWwgPC0gZnVuY3Rpb24oZml0KSB7DQogIHJldHVybihnZ3N1cnZwbG90KGZpdCwNCiAgICBkYXRhID0gZ2VuZV9kZiwNCiAgICBwdmFsID0gVCwNCiAgICByaXNrLnRhYmxlID0gVCwNCiAgICByaXNrLnRhYmxlLmhlaWdodCA9IDAuMw0KICApKQ0KfQ0KYGBgDQoNCmBgYHtyfQ0KY29tcHV0ZV9zdXJ2aXZhbF9kaWZmIDwtIGZ1bmN0aW9uKGdlbmVfZGYpIHsNCiAgcmV0dXJuKHN1cnZkaWZmKFN1cnYob3ZlcmFsbF9zdXJ2aXZhbCwgZGVjZWFzZWQpIH4gc3RyYXRhLCBkYXRhID0gZ2VuZV9kZikpDQp9DQpgYGANCg0KUGVyZm9ybSBzdXJ2aXZhbCBhbmFseXNpcyBieSB0ZXN0aW5nIGZvciB0aGUgZGlmZmVyZW5jZSBpbiB0aGUgS2FwbGFuLU1laWVyIGN1cnZlcyB1c2luZyB0aGUgRy1yaG8gZmFtaWx5IG9mIEhhcnJpbmd0b24gYW5kIEZsZW1pbmcgdGVzdHM6IGh0dHBzOi8vcmRyci5pby9jcmFuL3N1cnZpdmFsL21hbi9zdXJ2ZGlmZi5odG1sDQoNCk91ciBnZW5lcyBvZiBpbnRlcmVzdCBhcmUgR1NETUQgKHRoZSBwcmltYXJ5IGV4ZWN1dG9yIG9mIHB5cm9wdG9zaXMpIGFuZCB0aGUgZGlmZmVyZW50aWFsbHkgZXhwcmVzc2VkIGdlbmVzLg0KDQpgYGB7cn0NCnNpZ25pZmljYW50X3Byb2plY3RzIDwtIGMoKQ0Kc2lnbmlmaWNhbnRfZ2VuZXMgPC0gYygpDQoNCmN0ciA8LSAxDQpmb3IgKHByb2plY3QgaW4gcHJvamVjdHMpIHsNCiAgZm9yIChnZW5lIGluIGMoIkdTRE1EIiwgZ2VuZXMkZ2VuZSkpIHsNCiAgICBjYXQocHJvamVjdCwgZ2VuZSwgIlxuXG4iKQ0KICAgIGVycm9yIDwtIHRyeUNhdGNoICgNCiAgICAgIHsNCiAgICAgICAgZ2VuZV9kZiA8LSBjb25zdHJ1Y3RfZ2VuZV9kZihnZW5lLCBwcm9qZWN0KQ0KICAgICAgfSwNCiAgICAgIGVycm9yID0gZnVuY3Rpb24oZSkgew0KICAgICAgICBjYXQoIlxuXG49PT09PT09PT09PT09PT09PT09PT09PT09PT09XG5cbiIpDQogICAgICAgIGUNCiAgICAgIH0NCiAgICApDQogICAgDQogICAgaWYoaW5oZXJpdHMoZXJyb3IsICJlcnJvciIpKSBuZXh0DQoNCiAgICBpZiAobnJvdyhnZW5lX2RmKSA+IDApIHsNCiAgICAgIGZpdCA8LSBjb21wdXRlX3N1cml2YWxfZml0KGdlbmVfZGYpDQogICAgICB0cnlDYXRjaCAoDQogICAgICAgIHsNCiAgICAgICAgICBzdXJ2aXZhbCA8LSBjb21wdXRlX3N1cnZpdmFsX2RpZmYoZ2VuZV9kZikNCiAgICAgICAgICBjb3ggPC0gY29tcHV0ZV9jb3goZ2VuZV9kZikNCiAgICAgICAgICBwcmludChjdHIpDQogICAgICAgICAgY3RyIDwtIGN0ciArIDENCiAgICAgICAgICBwcmludChzdXJ2aXZhbCkNCiAgICAgICAgICBjYXQoIlxuIikNCiAgICAgICAgICBwcmludChjb3gpDQogICAgICAgICAgcHJpbnQocGxvdF9zdXJ2aXZhbChmaXQpKQ0KICAgICAgICAgIGlmIChwY2hpc3Eoc3Vydml2YWwkY2hpc3EsIGxlbmd0aChzdXJ2aXZhbCRuKS0xLCBsb3dlci50YWlsID0gRkFMU0UpIDwgMC4wNSkgew0KICAgICAgICAgICAgc2lnbmlmaWNhbnRfcHJvamVjdHMgPC0gYyhzaWduaWZpY2FudF9wcm9qZWN0cywgcHJvamVjdCkNCiAgICAgICAgICAgIHNpZ25pZmljYW50X2dlbmVzIDwtIGMoc2lnbmlmaWNhbnRfZ2VuZXMsIGdlbmUpDQogICAgICAgICAgfQ0KICAgICAgICB9LA0KICAgICAgICBlcnJvciA9IGZ1bmN0aW9uKGUpIHsNCiAgICAgICAgfQ0KICAgICAgKQ0KICAgICAgDQogICAgfQ0KICAgIA0KICAgIGNhdCgiXG5cbj09PT09PT09PT09PT09PT09PT09PT09PT09PT1cblxuIikNCiAgfQ0KfQ0KYGBgDQoNCkRpc3BsYXkgdGhlIHJlc3VsdHMgb25seSBmb3IgZ2VuZXMgd2hlcmUgYSBzaWduaWZpY2FudCBkaWZmZXJlbmNlIGluIHN1cnZpdmFsIGhhcyBiZWVuIHJlcG9ydGVkLg0KDQpgYGB7cn0NCnNpZ25pZmljYW50X2dlbmVzDQpgYGANCg0KYGBge3J9DQpudW1fc2lnbmlmaWNhbnRfZ2VuZXMgPC0gbGVuZ3RoKHNpZ25pZmljYW50X2dlbmVzKQ0KDQppZiAobnVtX3NpZ25pZmljYW50X2dlbmVzID4gMCkgew0KICBmb3IgKGkgaW4gMSA6IG51bV9zaWduaWZpY2FudF9nZW5lcykgew0KICAgIHByb2plY3QgPC0gc2lnbmlmaWNhbnRfcHJvamVjdHNbW2ldXQ0KICAgIGdlbmUgPC0gc2lnbmlmaWNhbnRfZ2VuZXNbW2ldXQ0KICAgIA0KICAgIGNhdChwcm9qZWN0LCBnZW5lLCAiXG5cbiIpDQogICAgZ2VuZV9kZiA8LSBjb25zdHJ1Y3RfZ2VuZV9kZihnZW5lLCBwcm9qZWN0KQ0KICAgIA0KICAgIGZpdCA8LSBjb21wdXRlX3N1cml2YWxfZml0KGdlbmVfZGYpDQogICAgc3Vydml2YWwgPC0gY29tcHV0ZV9zdXJ2aXZhbF9kaWZmKGdlbmVfZGYpDQogICAgY294IDwtIGNvbXB1dGVfY294KGdlbmVfZGYpDQogICAgcHJpbnQoc3Vydml2YWwpDQogICAgY2F0KCJcbiIpDQogICAgcHJpbnQoY294KQ0KICAgIHByaW50KHBsb3Rfc3Vydml2YWwoZml0KSkNCiAgICANCiAgICBjYXQoIlxuXG49PT09PT09PT09PT09PT09PT09PT09PT09PT09XG5cbiIpDQogIH0gDQp9DQpgYGA=